Field
Value
Language
dc.contributor.author
Osman, Islam
datacite.creator.affiliationIdentifier
https://ror.org/03rmrcq20
en_US
datacite.creator.affiliation
University of British Columbia
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0001-9935-2417
en_US
dc.contributor.author
Gupta, Anubhav
datacite.creator.affiliationIdentifier
https://ror.org/03rmrcq20
en_US
datacite.creator.affiliation
University of British Columbia
en_US
datacite.creator.nameIdentifier
en_US
dc.contributor.author
Shehata, Mohamed S.
datacite.creator.affiliationIdentifier
https://ror.org/03rmrcq20
en_US
datacite.creator.affiliation
University of British Columbia
en_US
datacite.creator.nameIdentifier
en_US
dc.contributor.author
Braun, John W.
datacite.creator.affiliationIdentifier
https://ror.org/03rmrcq20
en_US
datacite.creator.affiliation
University of British Columbia
en_US
datacite.creator.nameIdentifier
en_US
dc.date.accessioned
2024-12-04T20:59:50Z
dc.date.available
2024-12-04T20:59:50Z
dc.date.issued
2024-12-04
dc.identifier.uri
doi:10.20383/103.01017
dc.description
LUMID is a large-scale, unlabeled collection of over 2 million medical images spanning multiple imaging modalities, including CT scans, X-rays, MRIs, and more. This dataset has been meticulously curated from publicly available medical imaging repositories, addressing the critical challenge of limited scale in existing public datasets and the inaccessibility of high-quality private datasets. The primary motivation behind creating this dataset is to empower the medical imaging community with a resource suited for developing and training advanced deep learning models. By enabling the use of unsupervised and self-supervised learning approaches, this dataset facilitates the learning of rich, transferable representations that can significantly enhance performance across various medical imaging tasks, including classification, segmentation, and anomaly detection.
Key Features:
1) Diversity: Comprising images from multiple modalities and a wide range of medical imaging scenarios.
2) Scalability: A dataset of unprecedented size, providing a robust foundation for training deep neural networks.
3) Versatility: Specifically designed for unsupervised and self-supervised learning methods, fostering innovation in representation learning for medical imaging.
4) Open Access: Built entirely from public datasets, ensuring transparency and reproducibility.
This dataset is intended to serve as a cornerstone for advancing research in medical AI, fostering the development of models capable of generalizing across diverse imaging types and clinical conditions.
en_US
dc.publisher
Federated Research Data Repository / dépôt fédéré de données de recherche
dc.rights
Creative Commons Attribution 4.0 International (CC BY 4.0)
en_US
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
en_US
dc.subject
Medical imaging
en_US
dc.subject
CT
en_US
dc.subject
MRI
en_US
dc.subject
X-rays
en_US
dc.title
LUMID: Large-scale Unlabled Medical Imaging Dataset for Unsupervised and Self-supervised Learning
en_US
globus.shared_endpoint.name
f163c1b3-9c88-42f6-a7bb-5839ed6c4063
globus.shared_endpoint.path
/1/published/publication_1012/
datacite.publicationYear
2024
datacite.contributor.DataCollector
Anubhav Gupta
datacite.contributor.DataManager
Islam Osman
datacite.contributor.Supervisor
Mohamed S. Shehata
datacite.contributor.Supervisor
John W. Braun
datacite.resourceType
Dataset
en_US
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/s17z-r072
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/TCIA.BBAG-2923
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/SPGK-0P94
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/p5k5-tg43
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/TCIA.2020.GQRY-NC81
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/VTW4-X588
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/tcia.2019.tt7f4v7o
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/TCIA.2019.WOSKQ5OO
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2015.NPGZYZBZ
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2015.A6V7JIWX
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2015.L4FRET6Z
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/k9/tcia.2015.u1x8a5nr
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2016.8LNG8XDR
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2016.GKJ0ZWAC
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/tcia.2020.py71-5978
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/3CX3-S132
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/DJG7-GZ87
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2016.V6PBVTDR
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/25T7-6Y12
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/k9/tcia.2018.oblamn27
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2016.CX6YLSUX
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2016.F7PPNPNU
datacite.relatedIdentifier.IsDerivedFrom
https://doi.org/10.7937/K9/TCIA.2016.NDO1MDFQ
datacite.relatedIdentifier.IsDerivedFrom
https://nihcc.app.box.com/v/ChestXray-NIHCC
datacite.fundingReference.funderIdentifier
en_US
datacite.fundingReference.funderName
en_US
datacite.fundingReference.awardNumber
en_US
datacite.fundingReference.awardTitle
en_US
frdr.crdc.code
RDF1020112
en_US
frdr.crdc.group_en
Computer and information sciences
en_US
frdr.crdc.class_en
Artificial intelligence (AI)
en_US
frdr.crdc.field_en
Computer vision in artificial intelligence
en_US
frdr.crdc.group_fr
Informatique et systèmes d'information
fr_CA
frdr.crdc.class_fr
Intelligence artificielle (IA)
fr_CA
frdr.crdc.field_fr
Vision par ordinateur en intelligence artificielle
fr_CA