Field
Value
Language
dc.contributor.author
Harder, Phillip
datacite.creator.affiliationIdentifier
https://ror.org/010x8gc63
en_US
datacite.creator.affiliation
University of Saskatchewan
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0003-2144-2767
en_US
dc.contributor.author
Pomeroy, John
datacite.creator.affiliationIdentifier
https://ror.org/010x8gc63
en_US
datacite.creator.affiliation
University of Saskatchewan
en_US
datacite.creator.nameIdentifier
en_US
dc.contributor.author
Helgason, Warren
datacite.creator.affiliationIdentifier
https://ror.org/010x8gc63
en_US
datacite.creator.affiliation
University of Saskatchewan
en_US
datacite.creator.nameIdentifier
en_US
dc.date.accessioned
2020-01-14T00:57:17Z
dc.date.available
2020-01-14T00:57:17Z
dc.date.issued
2020-01-13
dc.identifier.uri
https://www.frdr-dfdr.ca/repo/dataset/8f68c261-c733-43a2-ada0-d23907d59807
dc.identifier.uri
https://doi.org/10.20383/101.0193
dc.description
Unmanned Aerial Vehicles (UAV) have had recent widespread application to capture high resolution information on snow processes and the data herein was collected to address the sub-canopy snow depth challenge. Previous demonstrations of snow depth mapping with UAV Structure from Motion (SfM) and airborne-lidar have focused on non-vegetated surfaces or reported large errors in the presence of vegetation. In contrast, UAV-lidar systems have high-density point clouds, measure returns from a wide range of scan angles, and so have a greater likelihood of successfully sensing the sub-canopy snow depth. The effectiveness of UAV-lidar and UAV-SfM in mapping snow depth in both open and forested terrain was tested with data collected in a 2019 field campaign in the Canadian Rockies Hydrological Observatory, Alberta and at Canadian Prairie sites near Saskatoon, Saskatchewan, Canada. The data archived here comprises the raw point clouds from the UAV-SfM and UAV-lidar platforms, generated digital surface models, and survey data used for accuracy assessment for the field campaign in question as reported in Harder et al., 2019.
This dataset was generated by the work of the Smart Water Systems Laboratory within the Centre for Hydrology at the University of Saskatchewan. This contributes to the objectives of a number of Pillar 3 Global Water Futures projects including Mountain Water Futures and the Transformative Technology and Smart Watersheds.
en_US
dc.publisher
Federated Research Data Repository / dépôt fédéré de données de recherche
dc.rights
Creative Commons Attribution 4.0 International (CC BY 4.0)
en_US
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
en_US
dc.subject
Unmanned Aerial Vehicle
en_US
dc.subject
lidar
en_US
dc.subject
structure from motion
en_US
dc.subject
snow depth
en_US
dc.subject
point cloud
en_US
dc.subject
digital surface model
en_US
dc.title
Unmanned aerial vehicle structure from motion and lidar data for sub-canopy snow depth mapping
en_US
globus.shared_endpoint.name
515c70c4-2eb8-4f2a-b406-7959b5edc28d
globus.shared_endpoint.path
/6/published/publication_193/
datacite.publicationYear
2020
datacite.date.Collected
2018-09-07/2019-04-25
datacite.resourceType
Dataset
en_US
datacite.relatedIdentifier.IsCitedBy
https://doi.org/10.5194/tc-14-1919-2020
datacite.geolocation.geolocationPoint
50.833 -115.220
datacite.geolocation.geolocationPoint
51.941 -106.379
datacite.geolocation.geolocationPoint
52.694 -106.461
datacite.geolocation.geolocationPlace
Fortress Mountain Snow Laboratory;Kananaskis;Alberta;Canada
datacite.geolocation.geolocationPlace
-;Clavet;Saskatchewan;Canada
datacite.geolocation.geolocationPlace
-;Rosthern;Saskatchewan;Canada
datacite.fundingReference.funderName
Natural Sciences and Engineering Research Council of Canada (NSERC)
en_US
datacite.fundingReference.awardNumber
en_US
datacite.fundingReference.awardTitle
en_US
datacite.fundingReference.funderName
Canada Research Chairs (CRC)
en_US
datacite.fundingReference.awardNumber
en_US
datacite.fundingReference.awardTitle
en_US
datacite.fundingReference.funderName
Canada First Research Excellence Fund (CFREF)
en_US
datacite.fundingReference.awardNumber
en_US
datacite.fundingReference.awardTitle
Global Water Futures Program (GWF)
en_US
datacite.fundingReference.funderName
Western Economic Diversification Canada (WD)
en_US
datacite.fundingReference.awardNumber
en_US
datacite.fundingReference.awardTitle
en_US
datacite.fundingReference.funderName
Global Water Futures (GWF)
en_US
datacite.fundingReference.awardNumber
en_US
datacite.fundingReference.awardTitle
en_US
frdr.crdc.code
RDF1050999
frdr.crdc.group_en
Earth and related environmental sciences
en_US
frdr.crdc.class_en
Geomatics and earth systems observations
en_US
frdr.crdc.field_en
Geomatics and earth systems observations, not elsewhere classified
en_US
frdr.crdc.group_fr
Sciences de la Terre et sciences de l'environnement connexes
fr_CA
frdr.crdc.class_fr
Géomatique et observation des systèmes terrestres
fr_CA
frdr.crdc.field_fr
Géomatique et observation des systèmes terrestres, non classé ailleurs
fr_CA
Appears in Collections: