Field
Value
Language
dc.contributor.author
Reshadi, Mir Amir Mohammad
datacite.creator.affiliationIdentifier
https://ror.org/01aff2v68
en_US
datacite.creator.affiliation
University of Waterloo
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0001-7975-5083
en_US
dc.contributor.author
Rezanezhad, Fereidoun
datacite.creator.affiliationIdentifier
https://ror.org/01aff2v68
en_US
datacite.creator.affiliation
University of Waterloo
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0002-9608-8005
en_US
dc.contributor.author
Shahvaran, Ali Reza
datacite.creator.affiliationIdentifier
https://ror.org/01aff2v68
en_US
datacite.creator.affiliation
University of Waterloo
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0001-7846-054X
en_US
dc.contributor.author
Ghajari, Amirhossein
datacite.creator.affiliationIdentifier
https://ror.org/01aff2v68
en_US
datacite.creator.affiliation
University of Waterloo
en_US
datacite.creator.nameIdentifier
en_US
dc.contributor.author
Kaykhosravi, Sarah
datacite.creator.affiliationIdentifier
https://ror.org/04mte1k06
en_US
datacite.creator.affiliation
National Research Council Canada
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0002-9481-8991
en_US
dc.contributor.author
Stephanie, Slowinski
datacite.creator.affiliationIdentifier
https://ror.org/01aff2v68
en_US
datacite.creator.affiliation
University of Waterloo
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0001-5090-441X
en_US
dc.contributor.author
Van Cappellen, Philippe
datacite.creator.affiliationIdentifier
https://ror.org/01aff2v68
en_US
datacite.creator.affiliation
University of Waterloo
en_US
datacite.creator.nameIdentifier
https://orcid.org/0000-0001-5476-0820
en_US
dc.coverage.temporal
2016/2024
dc.date.accessioned
2025-02-19T20:17:08Z
dc.date.available
2025-02-19T20:17:08Z
dc.date.issued
2025-02-19
dc.identifier.uri
https://doi.org/10.20383/103.01159
dc.identifier.uri
https://www.frdr-dfdr.ca/repo/dataset/a144aad5-192f-4c05-b167-7a10604a74e1
dc.description
This dataset compiles global measurements of stormwater microplastic concentrations along with their driving factors, serving as a resource for analyzing the extent and variability of microplastic pollution in stormwater systems. The dataset integrates measured microplastic concentrations from diverse locations with environmental, hydrological, meteorological, and land use data, offering a structured foundation for further analysis and modeling. To enhance its utility, three machine learning models were developed and interpreted to examine the relationships between stormwater microplastic concentrations and various hydrometeorological and socioeconomic variables. The dataset is intended to support future modeling efforts, particularly when supplemented with additional empirical studies. The provided model can be deployed in stormwater catchments where cost-intensive sampling and analysis are limited or used as a basis for further refinement and development.
en_US
dc.publisher
Federated Research Data Repository / dépôt fédéré de données de recherche
dc.rights
Creative Commons Attribution 4.0 International (CC BY 4.0)
en_US
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
en_US
dc.subject
Microplastics
en_US
dc.subject
Urban Stormwater
en_US
dc.subject
Concentration Data Base
en_US
dc.subject
Machine Learning
en_US
dc.subject
CatBoost
en_US
dc.title
A Deployable Model and Global Dataset on Stormwater Microplastic Concentrations and Drivers
en_US
globus.shared_endpoint.name
f163c1b3-9c88-42f6-a7bb-5839ed6c4063
globus.shared_endpoint.path
/1/published/publication_1154/
datacite.publicationYear
2025
datacite.contributor.DataCollector
Mir Amir Mohammad Reshadi
datacite.date.Collected
2022/2024
datacite.resourceType
Dataset
en_US
datacite.relatedIdentifier.IsSupplementTo
https://doi.org/10.1038/s41598-025-90612-0
datacite.geolocation.geolocationPlace
Gumi;Gumi;North Gyeongsang;South Korea
datacite.geolocation.geolocationPlace
Cheonan;Cheonan;South Chungcheong;South Korea
datacite.geolocation.geolocationPlace
Gwanpyeong-dong;Gwanpyeong-dong;Daejeon;South Korea
datacite.geolocation.geolocationPlace
Gothenburg;Gothenburg;Västra Götaland;Sweden
datacite.geolocation.geolocationPlace
Sundsvall;Sundsvall;Västernorrland;Sweden
datacite.geolocation.geolocationPlace
Newark;Newark;New Jersey;United States
datacite.geolocation.geolocationPlace
San Francisco;San Francisco;California;United States
datacite.geolocation.geolocationPlace
El Cerrito;El Cerrito;California;United States
datacite.geolocation.geolocationPlace
New Jersey;New Jersey;New Jersey;United States
datacite.geolocation.geolocationPlace
Tijuana;Tijuana;Baja California;Mexico
datacite.geolocation.geolocationPlace
Calgary;Calgary;Alberta;Canada
datacite.geolocation.geolocationPlace
Saskatoon;Saskatoon;Saskatchewan;Canada
datacite.geolocation.geolocationPlace
Vaughan;Vaughan;Ontario;Canada
datacite.geolocation.geolocationPlace
Kitchener;Kitchener;Ontario;Canada
datacite.geolocation.geolocationPlace
Wuhan;Wuhan;Hubei;China
datacite.geolocation.geolocationPlace
Shanghai;Shanghai;Shanghai;China
datacite.geolocation.geolocationPlace
Beijing;Beijing;Beijing;China
datacite.geolocation.geolocationPlace
Xifeng;Xifeng;Guizhou;China
datacite.geolocation.geolocationPlace
Paris;Paris;Île-de-France;France
datacite.geolocation.geolocationPlace
Pathum Thani;Pathum Thani;Pathum Thani;Thailand
datacite.geolocation.geolocationPlace
Gold Coast;Gold Coast;Queensland;Australia
datacite.geolocation.geolocationPlace
Perth;Perth;Western Australia;Australia
datacite.geolocation.geolocationPlace
Bushehr;Bushehr;Bushehr;Iran
datacite.geolocation.geolocationPlace
Tokyo;Tokyo;Tokyo;Japan
datacite.fundingReference.funderIdentifier
https://ror.org/01h531d29
en_US
datacite.fundingReference.funderName
Natural Sciences and Engineering Research Council
en_US
datacite.fundingReference.awardNumber
ALLRP 558435 – 20
en_US
datacite.fundingReference.awardTitle
Plastics science for a cleaner future
en_US
frdr.crdc.code
RDF1050706
en_US
frdr.crdc.group_en
Earth and related environmental sciences
en_US
frdr.crdc.class_en
Hydrology
en_US
frdr.crdc.field_en
Water quality
en_US
frdr.crdc.group_fr
Sciences de la Terre et sciences de l'environnement connexes
fr_CA
frdr.crdc.class_fr
Hydrologie
fr_CA
frdr.crdc.field_fr
La qualité d'eau
fr_CA
frdr.crdc.code
RDF1020104
en_US
frdr.crdc.group_en
Computer and information sciences
en_US
frdr.crdc.class_en
Artificial intelligence (AI)
en_US
frdr.crdc.field_en
Machine learning
en_US
frdr.crdc.group_fr
Informatique et systèmes d'information
fr_CA
frdr.crdc.class_fr
Intelligence artificielle (IA)
fr_CA
frdr.crdc.field_fr
Apprentissage machine
fr_CA
datacite.description.other
This dataset contains the modeling code and data used in the study titled "Assessment of Environmental and Socioeconomic Drivers of Urban Stormwater Microplastics Using Machine Learning," published in Scientific Reports. Users are encouraged to supplement the dataset with additional findings to enhance its applicability and relevance.
en_US